GB Taq DNA Polymerase For Research use only

Cat No: GB2410

Size: 500 unite Concentration: 5u/ul

Description:

GB Taq DNA Polymerase is a thermostable recombinant DNA polymerase resulting from thermophilic bacterium Thermus aquaticus. GB Taq DNA Polymerase can amplify DNA target up to 5 kb (simple template). Its molecular weight is 94 kDa. The elongation velocity is 0.9~1.2kb/min (70~75°C). It has 5' to 3' polymerase activity but lacks of 3' to 5' exonuclease activity that results in a 3'-dA overhangs PCR product.

How to use:

General protocol

Components for a 50 µL Reaction

Component	Volume (µL)	Final Concentration
10X GB Standard Taq Buffer	5	1x
10 mM dNTPs	1	200 μΜ
Forward Primer	1	0.2 μΜ
Reverse Primer	1	0.2 μΜ
Template DNA	variable	<1,000 ng
GB Taq DNA Polymerase(GB2410)	0.25	1.25 units/50 μL
Nuclease-free water	Up to 50	

Specific components and steps of the PCR protocol with GB Taq DNA polymerase:

Initial Denaturation

This step is crucial as it ensures that the double-stranded DNA template is fully denatured into single strands, which are accessible for primer binding. Typically performed at 95°C for 30 seconds, this step can be extended for templates that are rich in GC content or particularly complex.

Primers

- **Forward Primer and Reverse Primer**: These are short sequences of nucleotides that are designed to anneal to the target DNA sequence. They define the region of DNA to be amplified.
- **Concentration**: Typically used at a final concentration of 0.2 μM each. Primer design is critical for specificity and efficiency of the PCR.

E

Call: +971 56 3000 259

mail: info@Greenbiogene.com

Website: www.Greenbiogene.com

dNTPs (Cat No: GB2412)

• **Deoxynucleotide Triphosphates (dNTPs)**: These are the building blocks that Taq DNA polymerase uses to synthesize new DNA strands. A common final concentration is 200 µM each.

Template DNA

• **DNA Template**: This is the sample DNA containing the sequence you wish to amplify. The amount can vary, but generally, less than 1,000 ng is used to avoid inhibition of the reaction.

GB Taq DNA Polymerase

• Enzyme Concentration: Typically, 1.25 units per 50 μL reaction is sufficient. Overuse can lead to nonspecific amplification and artifacts.

Thermal Cycling Steps

- 1. **Denaturation**: High temperatures (95°C) to melt the double-stranded DNA.
- 2. **Annealing**: Lower temperatures (45-68°C) to allow primers to bind to the single-stranded DNA. The exact temperature depends on the primers' melting temperatures.
- 3. **Extension**: Intermediate temperature (68°C) for Taq polymerase to synthesize the new DNA strand. The duration depends on the length of the target sequence, generally 1 minute per kb.

Final Extension

• **Final Extension**: This step ensures that any remaining single-stranded DNA is fully extended. Typically performed at 68°C for 5 minutes.

Hold

• **Hold**: The reaction is kept at a low temperature (4-10°C) to preserve the amplified DNA until it can be analyzed.

Optimization Tips

- **Magnesium Concentration**: Mg²⁺ is a critical cofactor for Taq DNA polymerase. Adjusting the concentration (1.5-2.0 mM) can improve the efficiency and specificity of the PCR.
- Additives: For difficult templates, additives like DMSO or formamide can help by reducing secondary structures and improving denaturation.

Tips

- **Mineral Oil**: If your thermocycler doesn't have a heated lid, overlay the sample with mineral oil to prevent evaporation.
- **Optimization**: Adjust Mg²⁺ concentration (1.5-2.0 mM) and consider additives like DMSO or formamide for difficult targets.
- Quality of DNA: Use high-quality, purified DNA templates for better results

B

Call: +971 56 3000 259

Email: info@Greenbiogene.com

Website: www.Greenbiogene.com